B. Abegaz
Loyola University of Chicago,
United States
Keywords: power converter, algorithms, AI, machine learning
Summary:
The control of a type of switching voltage regulators (boost converters) is performed on a novel system-on-chip named ABSCA. The ABSCA system executes cluster based machine learning algorithms namely Gaussian, Hierarchical and Self-Organizing Mapping and optimizes the performance of the boost converter for various power conversion applications. The results of the implementation show that the hierarchical clustering based machine learning algorithm implemented on the ABSCA controller improved the performance of the boost converter system by 3.907% in terms of reducing the voltage settling time. The SOM algorithm improves the performance of the system by 63.24% in terms of voltage settling time, and by 99% interms of minimizing voltage overshoots.