Curing and self-healing of enzymatic construction materials using nanoparticles

N. Rahbar
Worcester Polytechnic Institute, Massachusetts, United States

Poster stand number: T142

Keywords: Construction material, Laser heating, Nanoparticle, Self-healing, Enzymatic

Preparation of construction materials on site may offer advantages in transportation and storage. However, a major limitation of on-site preparation of some materials is the need for heat and oven desiccation for adequate curing. Here, we describe a method that allows rapid curing under ambient conditions through the addition of 0.1% iron oxide nanoparticles to a carbon-negative enzymatic construction material (ECM) to make ECM-n. Specifically, we show that a low-power laser (3W at 808 nm) can cure ECM-n to an optimal mechanical strength in 12 h, which can be compared to the 14-day period needed for in situ air drying. In addition, the incorporation of nanoparticles allows rapid self-healing of large-scale flaws and that incandescent light can be used if lasers are not available. This method establishes an on-site manufacturing capability for ECM-n and other construction materials and supports thermal controllability of the local structure in low-temperature regions. The poster is from Enzymatic Inc.